LangChain Plugin: Agent
The FlotorchLangChainAgent serves as the primary component for integrating FloTorch-managed agent configurations with LangChain. It enables developers to define agent configurations centrally in the FloTorch Console and instantiate them with minimal code, eliminating the need for complex in-code configuration management.
Prerequisites
Section titled “Prerequisites”Before using FlotorchLangChainAgent, ensure you have completed the general prerequisites outlined in the LangChain Plugin Overview, including installation and environment configuration.
Configuration
Section titled “Configuration”Parameters
Section titled “Parameters”Configure your agent using the following parameters:
FlotorchLangChainAgent( agent_name: str, # Agent name from FloTorch Console (required) enable_memory: bool = False, # Enable memory functionality custom_tools: list = None, # List of custom user-defined tools base_url: str = None, # FloTorch Gateway URL api_key: str = None # FloTorch API key)Parameter Details:
agent_name- Must match an existing agent name in your FloTorch Consoleenable_memory- WhenTrue, injects memory placeholders in the prompt for session and long-term summariescustom_tools- List of custom LangChain tools to add to the agent’s capabilitiesbase_url- FloTorch Gateway endpoint (defaults to environment variableFLOTORCH_BASE_URL)api_key- Authentication key (defaults to environment variableFLOTORCH_API_KEY)
Note: When
enable_memory=True, the prompt automatically injects placeholders for session and long-term memory summaries. Tools include custom tools and MCP tools from Console configuration.
Features
Section titled “Features”Automatic Configuration Loading
Section titled “Automatic Configuration Loading”The agent automatically loads comprehensive configuration from FloTorch Console, including:
- Agent name and description (goal)
- System instructions and prompts
- LLM model configuration
- Input/output schemas
- MCP tools configuration
- Synchronization settings
Configuration Synchronization
Section titled “Configuration Synchronization”Supports automatic configuration updates based on:
syncEnabled- Enables automatic configuration reloadingsyncInterval- Defines the synchronization interval in seconds
This ensures your agent stays up-to-date with changes made in the FloTorch Console without requiring code redeployment.
Tool Integration
Section titled “Tool Integration”Automatically integrates tools configured in FloTorch Console:
- MCP Tools - Loaded directly from agent configuration
- Custom Tools - Add your own LangChain tools via the
custom_toolsparameter - Tool Management - Handles authentication and connection automatically
- LangChain Compatibility - Seamlessly integrates with LangChain’s tool framework
Memory Integration
Section titled “Memory Integration”Supports LangChain’s memory patterns:
- Memory Placeholders - Automatically injects memory placeholders when
enable_memory=True - Memory Support - Works with LangChain memory services for conversation context
Logging Configuration
Section titled “Logging Configuration”FloTorch LangChain Plugin supports configurable logging to help you monitor and debug your agents. For comprehensive logging configuration details, including environment variables and programmatic setup, refer to the SDK Logging Configuration documentation.
Quick Setup:
# Enable debug logging to consoleexport FLOTORCH_LOG_DEBUG=trueexport FLOTORCH_LOG_PROVIDER="console"Or configure programmatically:
from flotorch.sdk.logger.global_logger import configure_logger
configure_logger(debug=True, log_provider="console")For detailed logging configuration options, see the SDK Logging Configuration guide.
Usage Example
Section titled “Usage Example”Basic Agent Setup
Section titled “Basic Agent Setup”from flotorch.langchain.agent import FlotorchLangChainAgentfrom langchain.agents import AgentExecutor
# Initialize the agent manageragent_manager = FlotorchLangChainAgent( agent_name="my-agent", # Must exist in FloTorch Console base_url="https://gateway.flotorch.cloud", api_key="your_api_key" # Note: Agent goal and system prompt are configured # in the FloTorch Console during agent creation)
# Get the configured agent and toolsagent = agent_manager.get_agent()tools = agent_manager.get_tools()
# Use with AgentExecutorexecutor = AgentExecutor( agent=agent, tools=tools, verbose=False, handle_parsing_errors=True)Agent with Custom Tools
Section titled “Agent with Custom Tools”from flotorch.langchain.agent import FlotorchLangChainAgentfrom langchain.agents import AgentExecutorfrom langchain.tools import tool
# Define a custom weather tool@tooldef get_weather(location: str) -> str: """ Get the current weather for a specific location. Args: location: The city or location name to get weather for Returns: A string describing the current weather conditions """ return f"The weather in {location} is sunny with a temperature of 72°F (22°C)."
# Initialize agent with custom weather toolagent_manager = FlotorchLangChainAgent( agent_name="weather-agent", custom_tools=[get_weather], # Add the custom weather tool base_url="https://gateway.flotorch.cloud", api_key="your_api_key")
# Get the configured agent and toolsagent = agent_manager.get_agent()tools = agent_manager.get_tools()
# Use with AgentExecutorexecutor = AgentExecutor( agent=agent, tools=tools, verbose=False, handle_parsing_errors=True)Best Practices
Section titled “Best Practices”- Configuration Management - Define agent configurations in FloTorch Console rather than in code
- Environment Variables - Use environment variables for credentials to avoid hardcoding sensitive information
- Configuration Sync - Enable synchronization in the Console to receive updates without redeployment
- Memory Integration - Enable memory only when agents need to access persistent memory to avoid unnecessary overhead
- Custom Tools - Define custom tools with clear descriptions and proper error handling for robust agent behavior
- Logging - Configure logging based on your environment: use console logging for development and file logging for production. See SDK Logging Configuration for details
Next Steps
Section titled “Next Steps”- LLM Configuration - Configure language models for your agent
- Memory Integration - Add persistent memory capabilities
- Session Management - Implement session persistence